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Scaling of the conductances and the finite-size localization lengths is generalized to anisotropic systems and
tested in two-dimensional systems. Scaling functions of isotropic systems are recovered once the dimension of
the system in each direction is chosen to be proportional to the localization length. It is also shown that the
geometric mean of the localization lengths is a function of the geometric mean of the conductivities. The ratio
of the localization lengths is proportional to the square root of the ratio of the conductivities, which in turn is
proportional to the anisotropy strengtht, in the weak scattering limit.@S0163-1829~97!52132-1#

Scaling theories have been successfully applied to the
problem of Anderson localization1,2 involving the effects of
disorder on the nature of the electronic wave function. The
most remarkable result of the scaling theory is its prediction3

that a continuous metal-insulator transition exists in three
dimensions, and all the states are localized in two dimen-
sions, in the absence of magnetic field and spin-orbit inter-
action. The essential hypothesis of the one-parameter scaling
theory of localization is that the rate of change of the con-
ductance when the size of the system changes is controlled
by the conductance alone. The critical conductanceGc that
separates true metals from insulators is estimated1 to beGc

50.1(e2/\). The scaling function should also be universal
within a class that is characterized by a few general symme-
tries of the governing Hamiltonian. The scaling theory re-
sults are supported by a large number of numerical studies2

in d52 and d53. Most notably, finite-size scaling
calculations4 on the transmission properties of a quasi-one-
dimensional system explicitly demonstrated the existence of
a universal scaling function close to the critical regime.

Most of the previous work involves isotropic systems.

Recently, the problem of Anderson localization in aniso-
tropic systems has attracted considerable attention,5–8 largely
due to the fact that a large variety of materials are highly
anisotropic. It was recently shown6 that in a highly aniso-
tropic system of weakly coupled planes, states are localized
in the direction parallel and perpendicular to the plane at
exactly the same amount of critical disorder, in support of
the one-parameter scaling theory which excludes the possi-
bility of having a wave function localized in one direction
and extended in the other two. However, several issues re-
garding the relation between the conductances in different
directions were raised. Most importantly, the question of
scaling of conductances and localization lengths was not
resolved.6 Although anisotropy is known not to change the
universality and thus the critical behavior of the system,9 the
exact form of the scaling function, on the other hand, is
expected to depend on the anisotropy in the form of aniso-
tropic physical parameters such as anisotropic hopping inte-
grals or geometrical aspect ratios.10

Extending the scaling argument to an anisotropic system,
we assume that the logarithmic derivativeb i , of the dimen-
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sionless conductancegi , in any direction will be a function
of the conductance in that direction as well as other direc-
tions,

b i5
dloggi

dloga
5b i~$gi%! , ~1!

where a is an appropriate length scale. All thegi become
relevant scaling parameters. All other physical quantities,
such as anisotropic hopping integrals or anisotropic geo-
metrical shapes, should enter only through the conductances
gi . Exactly the same argument can be applied to the scaling
function of localization length, obtained from transfer-matrix
calculations with a quasi-one-dimensional geometry of cross
sectionM j3Mk ,

l i~M j ,Mk!

j i
5hS M j

j j
,
Mk

jk
D , ~2!

wherel i is the finite-size localization length in the direction
i , andj l ~l 51,2,3! is the localization length for the infinite
system. The fundamental assumption in Eq.~2! is that local-
ization lengths provide the only characteristic length scale.
Once the characteristic lengths are measured in terms of the
localization lengths in the corresponding directions, the scal-
ing behaviors of the system within the same universality
class are governed by the same equation.

The scaling functionsb i and h describe the behavior of
both systems with isotropic Hamiltonians but noncubic ge-
ometry, as well as systems with anisotropic Hamiltonians.
Scaling in anisotropic systems in general is not known. Only
when the conductances in all directions are the same, then
the scaling functionb i will be exactly the same as that of a
cubic isotropic system. For an anisotropic system, this can
only be achieved by choosing an appropriate geometry
which might not be knowna priori. As an example, we will
see that indeed such a procedure works in a system with
highly anisotropic hopping. We will demonstrate that in two-
dimensional systems, Eq.~2! can be applied straightfor-
wardly such that all the data are described by the scaling
functions of the isotropic system. Furthermore, we will also
show that the geometric mean of the localization lengths is a
universal function of the geometric mean of the bare conduc-
tivity, and their ratio can also be estimated in the weak scat-
tering limit. These results follow directly from applying the
basic idea of scaling theory.

We consider the following Hamiltonian for an anisotropic
2D disordered model:

H5(
n

enun&^nu1(
n,m

tnmun&^mu , ~3!

wheren labels the sites of a square lattice. The on-site ener-
gies en are independently distributed at random, within an
interval of widthW. The second term is taken over all pairs
of nearest-neighbor~NN! sites, and the hopping integral
tnm51 or t ~,1!, depending on hopping directions. As a
convention, we have assigned the direction with the large
(tnm51) and the small (tnm5t) hopping value as the paral-
lel (i) and the perpendicular (') directions, respectively.

In two-dimensional systems, Eq.~2! can be written as

l i~M j !

M j
5

j i

j j
f S M j

j j
D , ~4!

wheref (x)5h(x)/x is the scaling function for isotropic sys-
tems. We have used the transfer-matrix method2 to calculate
the finite-size localization lengthl i(M j ) for many M j
( i ,j 5 1,2! ~M524, 48, 96, 120, 150, 300! andW52–14 and
severalt andE, for both directions. Figure 1 shows that all
of our raw numerical data for bothlM

i andlM
' for different

anisotropiest, different disorderW, and different energies
E, follow one universal curve, by appropriately choosing the
localization length in the two directions,j i and j' . The
solid line through the data in Fig. 1 is the 2D isotropic scal-
ing function. This is a direct confirmation of the scaling re-
lation Eq.~4!.

An important consequence of Eq.~4! is that at the critical
point, if any, the geometric mean of the ratio of the finite-
size localization length to the cross-section width is a con-
stant. This was indeed found6 to be true but interpreted in-
stead as a result of possible conformal invariance. We point
out that at the critical point, the geometric mean of the con-
ductances along the different directions may not be a con-
stant. This behavior of the conductances is different from
that of lM /M and needs further study for its complete un-
derstanding.

To further test the scaling idea we have calculated the
conductanceG in the two different directions for our aniso-
tropic system. From the multichannel Landauer formula,11,12

G5(e2/h)Tr(t†t), wheret is the transmission matrix. With
anisotropic hoppings, one should choose a geometry other
than the square such that the conductance is the same in all
the directions and then scale up the size of the system.8 The
conductance should remain isotropic if one parameter scaling
theory is correct.5 We have tested this idea in a 2D system
with t50.1. The ratio of the two localization lengths was
found to be 10 atW53.6. We have scaled up the system of
a rectangle of sizeM3N by a factor of 4, and from Fig. 2,
one can clearly see that although the conductance becomes
extremely small it remains isotropic, in agreement with the
predictions of the one-parameter scaling theory.5 For a

FIG. 1. The numerically determined scaling function for the 2D
anisotropic system for different anisotropic constantst, different
energiesE, and disorderW. The solid line through the data is the
2D isotropic scaling function. They axis isj jl i(M j )/j iM j , while
thex axis isM j /j j . The indexi and j can be either the parallel or
the perpendicular direction, respectively.
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square geometry and with the same parameters as in Fig. 2,
the conductances in the two directions would diverge rapidly
as the system size scales up.

Another length rescaling aspect can be seen by consider-
ing the self-consistent theory of localization. It was shown in
an earlier work6 that in order for the localization criteria to
be the same in all directions, the length scale has to be cho-
sen proportional to the square root of the bare conductivity.
This leads to an equation for the metal-insulator transition
that is exactly the same as that of the isotropic system, ex-
cept that both the bare conductivity and the effective lattice
constant are replaced by their geometric means. A direct con-
sequence of this formulation is that the geometric mean of
the localization~or correlation! lengths should be only a
function of the geometric mean of the bare conductivities,
i.e.,

^j&g5 f l~^s0&g!/Sf , ~5!

where ^ &g denote the geometric mean of the values in the
two directions.s0 is the bare conductivity andSf is the
Fermi-surface area that enters through the relations0
;Sf l . l is the mean free path.f l is a function that can be
obtained via the potential well analogy~PWA! or the self-
consistent theory of localization.5 Using the PWA, j
52.72l exp@p2\s0 /e2# was obtained.13

Equation~5! can be easily checked in the weak disorder
limit, at which the geometric mean of the bare conductivity
can be shown to bes̄0515A2t/pW2, within the coherent
potential approximation~CPA!.14 For the 2D anisotropic sys-
tem, Sf(E50)54pA11t2. We have plottedSf^j'j i&

1/2

versus 15A2t/pW2, and find that the data fall into one uni-
versal curve for all the different anisotropiest and disorder
W. This weak scattering limit behavior of the geometric
mean of the localization lengths versus the geometric mean
of the conductivities is very suggestive of the way the local-
ization lengths have to scale. The full expression, valid for
all disorder strength,

s i05
2e2\

p (
k

v i
2~k!

S2
2

@„E2S12E~k!…21S2
2#2 , ~6!

can also be evaluated.S5S12 iS2 is the self-energy ob-
tained by solving a self-consistent equation.5,13,15This shows
remarkably good scaling, as shown in Fig. 3, including re-
sults forE50, as well as forEÞ0. The curve in Fig. 3 shows

how the geometric mean of the localization length depends
on the geometric mean of the bare conductivity in a universal
fashion, independent of the anisotropy, energy, and disorder.
These results are a strong confirmation of scaling in aniso-
tropic systems. Notice that the geometric mean of the con-
ductivities ^s0&g is the appropriate quantity that gives the
same results as in the isotropic case. It is therefore appropri-
ate that^s0&g will be used in the interpretation of experi-
ments in highly anisotropic systems.

The ratio of the localization lengths can be obtained by
carrying the length rescaling idea further. We can see that the
conductances in all the directions should be the same, if the
dimension of the system is proportional to the localization
length in that direction. This implies the following relation:

j i

j j
5S s i

s j
D 1/2

5S s i0

s j 0
D 1/2S a i

a j
D 1/2

. ~7!

s i is the exact value of the scale-dependent conductivity,s i0
is the bare conductivity which can be calculated within the
CPA, a i is the correction factor of the bare conductivity in
the i direction. It is very difficult to calculate the correction
factora i , but it approaches one in the weak scattering limit.
In Fig. 4, we show the results ofj' /tj i versus 1/W for
different anisotropiest and energiesE. In the weak disorder
limit, we can approximates by s0, and this is shown as
open symbols in Fig. 4. Notice that in the weak disorder
limit, W→ 0, and fort → 0, s0' /s0i;t2, and by using Eq.
~7!, one obtains for the ratio of the localization lengths,
j' /j i;t. This behavior is clearly seen in Fig. 4 for large 1/
W. Agreement with the CPA results for the conductivity are
excellent for weak disorder. Deviation of the ratio from the
open symbols for strong disorder indicates that the true con-
ductivity at length scalej is stongly normalized compared
with the bare conductivity. However, it is notable that the
trend of the ratio asW increases is captured by the simple
expression. For largeW, no dependence onE should be
expected for smallE, thus the ratios converge to the same
value for differentE with t50.3, as can be seen in the inset
in Fig. 4.

In summary, we have performed an extensive numerical
study of the scaling properties of highly anisotropic systems.

FIG. 2. The conductanceG in units of e2/h of an anisotropic
systemM3N, versusM for t50.1 andE50. Notice thatG along
the two directions is exactly the same.

FIG. 3. The product of the Fermi surfaceSf with the geometric
mean of the localization lengths^j'j i&

1/2 is plotted versus the geo-
metric mean of the bare conductivities^s0's0i&

1/2 for all the ener-
giesE, t, andW.
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Scaling functions of isotropic systems are recovered once the
dimension of the system in each direction is chosen to be
proportional to the localization length. In the localized re-

gime, the ratio of the localization lengths is proportional to
the square root of the ratio of the conductivities which in turn
is proportional to the strength of the anisotropyt ~i.e.,
j' /j i;t). Recall that in the extended regime5,6 the ratio of
the correlation length is inversely proportional to the ratio of
the conductivity~i.e., j' /j i5s0i /s0';1/t2). It was also
shown that the geometric mean of the localization lengths is
a function of the geometric mean of the conductivities.
Finally, it was numerically shown that the conductances
along the two different directions of the anisotropic system
are the same, provided that the dimension of the anisotropic
system is proportional to the localization length in this direc-
tion. This procedure can be easily used in other anisotropic
systems.
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FIG. 4. The ratio ofj' /tj i is plotted versus 1/W, for t50.1,
0.3, and 0.6 withE50. j' andj i are the localization lengths along
the two propagating directions. The solid symbols are the numerical
results, while the open symbols are the CPA results. In the inset the
numerical results ofj' /tj i versus 1/W is plotted for t50.3 with
E50.0, 1.5, and 2.0.
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